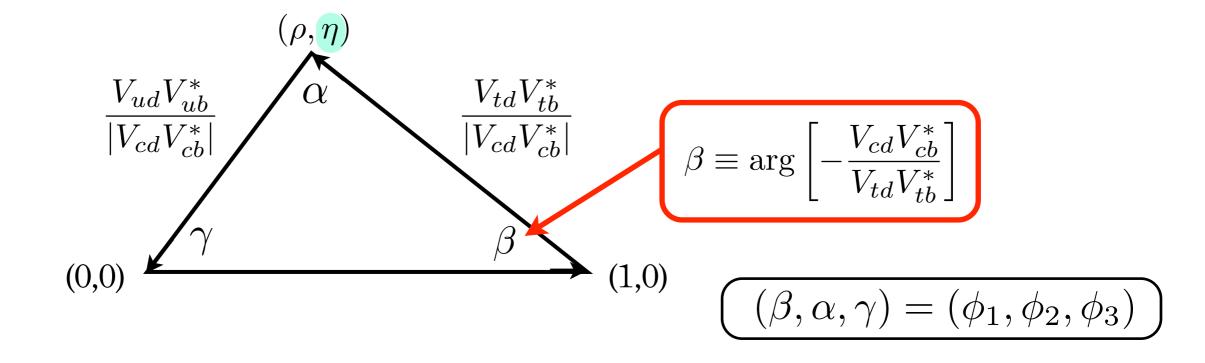
Experimental Status of the CKM angle β

James F. Hirschauer

Fermilab (recently University of Colorado)

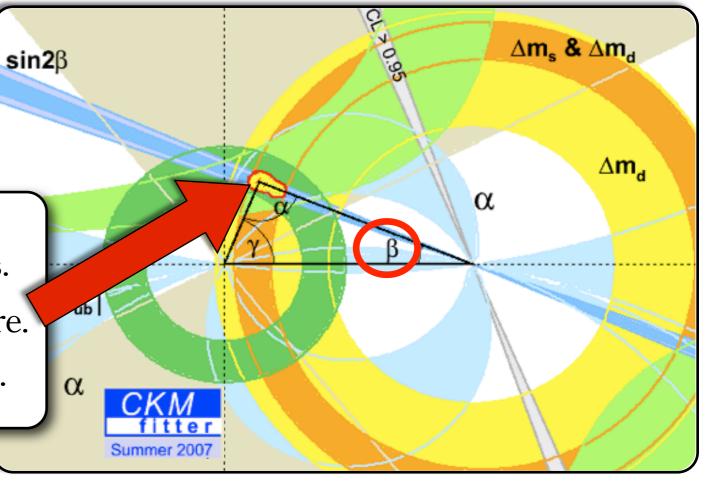
(For the BABAR Collaboration)

10th Conference on Intersections of Particle and Nuclear Physics San Diego, California - May 2009


CP violation in Standard Model

• Arises from single phase in CKM matrix:

$$V_{\text{CKM}} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \simeq \begin{bmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

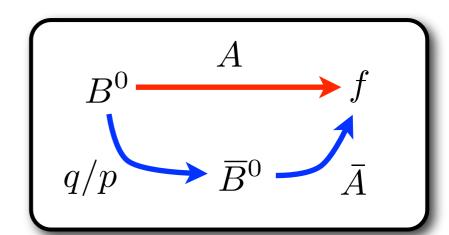

 $\overline{\lambda \equiv \sin heta_{
m Cabibbo}}$

• Unitarity of V_{CKM} can be represented as a triangle in the complex plane:

Overconstraining the triangle

- Measure the sides and angles of the unitary triangle in diverse processes.
- Agreement confirms the CKM picture.
- Disagreement indicates new physics.

Mixing-induced CP violation

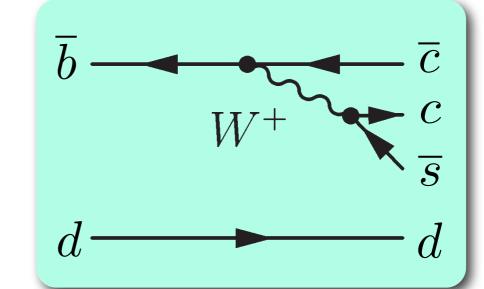

• For B meson pairs, produced coherently in $\Upsilon(4S) \to B^0 \overline{B}{}^0$, time dependent decay rate asymmetry (to CP eigenstate f):

$$A_f(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = -S_f \sin(\Delta m_B t) + C_f \cos(\Delta m_B t)$$

- Final state f is reached from B^0 and \overline{B}^0 , so amplitudes for decay and mixing+decay interfere:
- We define S_f and C_f in terms of λ_f :

$$S_f \equiv \frac{-2\operatorname{Im}\lambda_f}{1+|\lambda_f|^2} \qquad C_f \equiv \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}$$

• Interference causes Im $\lambda_f \neq 0$, though $|\lambda_f| = 1$.



$$\lambda_f \equiv \eta_f \frac{q}{p} \frac{\overline{A}_{\bar{f}}}{A_f} \longleftarrow \begin{array}{c} \text{ratio of decay} \\ \text{amplitudes} \end{array}$$
 CP eigenvalue
$$\begin{array}{c} \text{mixing} \\ \text{amplitude} \end{array}$$

$S_{c\overline{c}s} = \sin 2\beta$

- Tree dominated $b \to c\bar{c}s$ decays.
 - $B^0 \to J/\psi K^0_{S}$ $B^0 \to J/\psi K^0_L$,

 - $B^0 \to \psi(2S)K_S^0$,
 - $B^0 o J/\psi K^{*0}$ etc.

• Theoretically very clean, in SM:

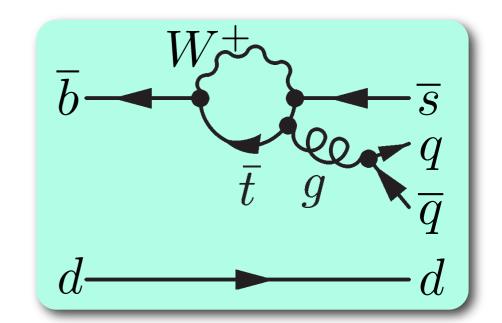
$$S = \sin 2\beta$$

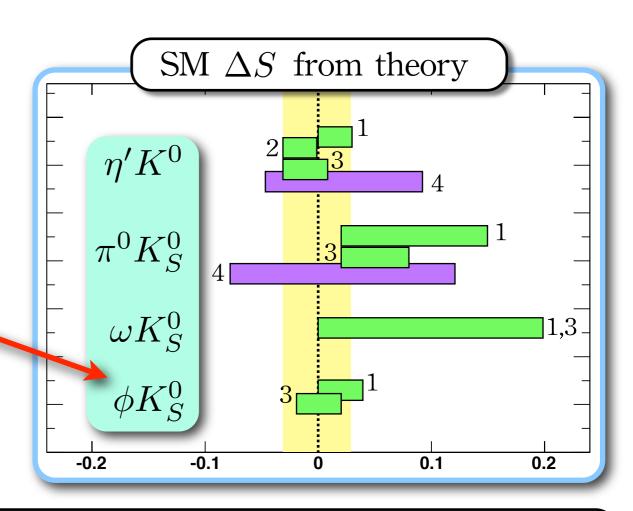
$$C = 0$$

"Golden mode":

- large branching fraction ($\sim 10^{-3}$).
- good reconstruction efficiency (30%).
- experimentally clean signature.

$S_f = \sin 2\beta_{\text{eff}}$


- Penguin dominated $b \to q\bar{q}s$ decays.
 - $B^0 \to \eta' K^0, \phi K^0$, etc.
- Pollution from secondary amplitudes:


$$S_f \simeq \sin 2\beta \equiv \sin 2\beta_{\text{eff}}$$

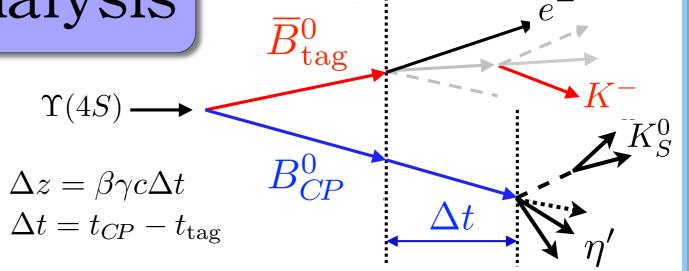
 $C_f \simeq 0$

• In clean modes, SM suggests

$$\Delta S \equiv \sin 2\beta_{\text{eff}} - \sin 2\beta \simeq 0.03$$

- Sensitive to new particles in loop.
- Large ΔS indicates new physics.

¹QCDF Beneke, PLB620, 143 (2005)


²SCET/QCDF Williamson, Zupan, PRD74, 014003 (2006)

³QCDF Cheng, Chua, Soni, PRD72, 014006 (2005)

⁴SU(3) Gronau, Rosner, Zupan, PRD74, 093003 (2006)

Time dependent analysis

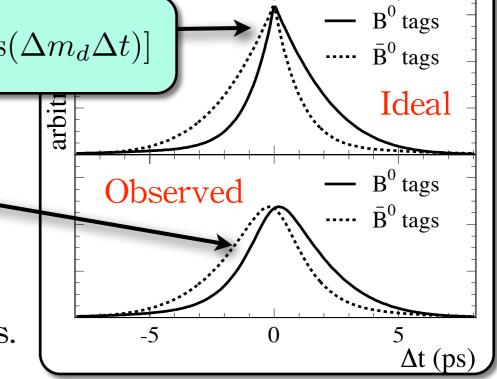
- Fully reconstruct B_{CP} ; partially reconstruct B_{tag} .
 - Measure Δz , convert to Δt .
 - Determine flavor of B_{tag} .

Effective tagging efficiency:

$$Q = (31.2 \pm 0.3)\%$$
 (Babar)

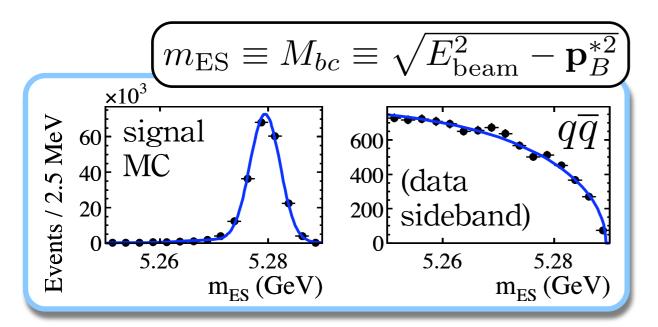
$$Q = (29.0 \pm 0.1)\%$$
 (Belle)

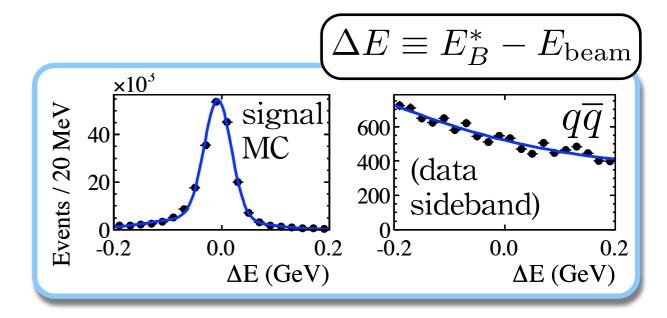
$$Q = \epsilon (1 - 2w)^2$$

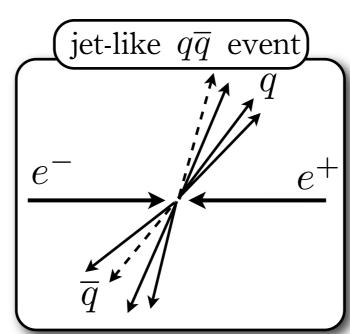

 ϵ : efficiency

w: mistag rate

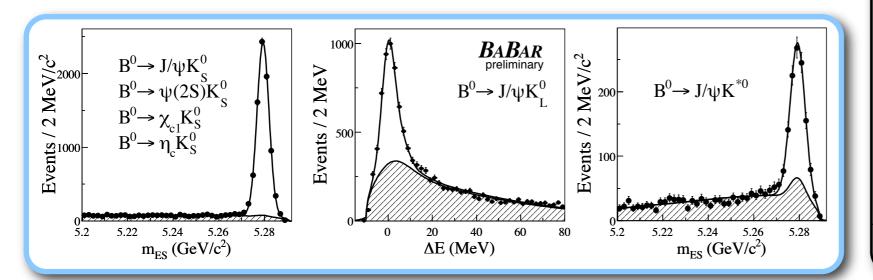
• Δt and flavor tag (\pm) go into decay rate:

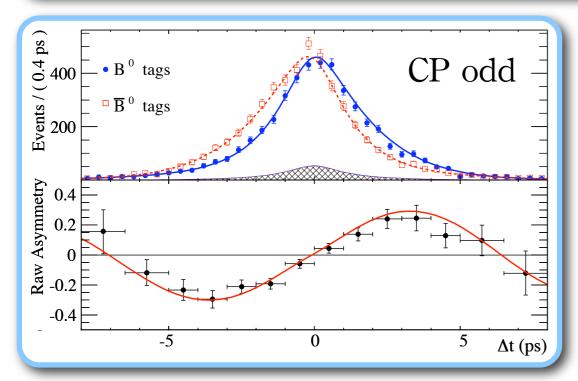

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[1 \pm (-\eta_f S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t)) \right]$$

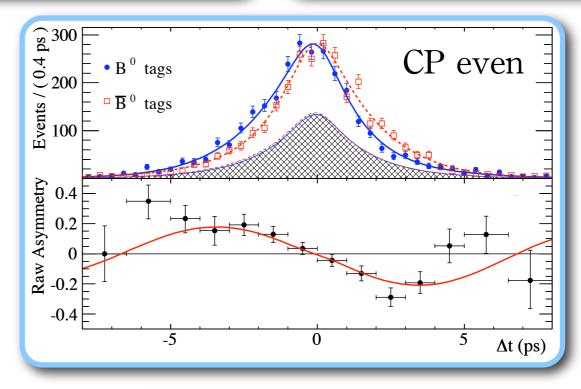

- Modify $f_{\pm}(\Delta t)$ for experimental Δt resolution and tagging performance.
- Parameters of $f_{\pm}(\Delta t)$ obtained from a large sample of fully reconstructed self-tagging B decays.


Maximum Likelihood Fit

- Components for signal, $e^+e^- \to q\overline{q} \ (q=u,d,s,c)$, charmed and charmless $B\overline{B}$ decays.
- Discriminate with variables related to B meson kinematics:


- Variables that exploit differing event topologies:
 - Babar's Fisher discriminant (\mathcal{F}) .
 - Belle's likelihood ratio $(\mathcal{R}_{s/b})$.


spherical signal event $\begin{array}{c}
B_{CP} \\
e^{-} \\
\end{array}$

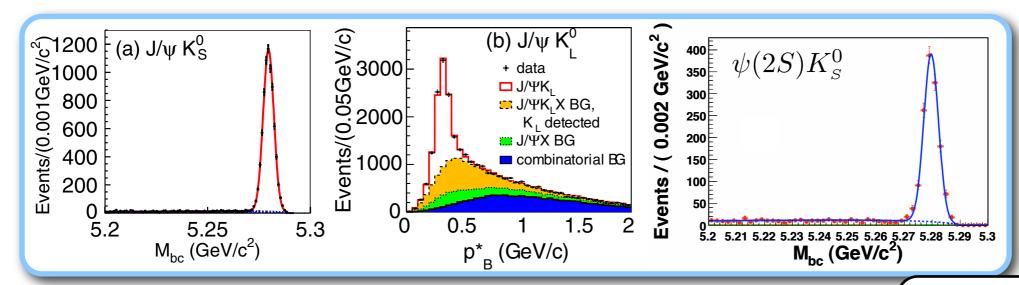

$b \to c\overline{c}s \mod s$

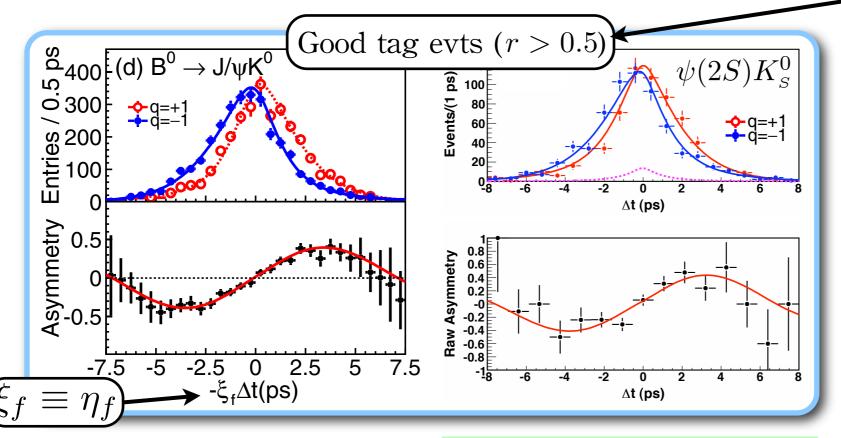
arXiv:0808.1903 (2008), 465M $B\overline{B}$ (accepted by PRD)

Mode	$N_{ m evts}$	P(%)
$J/\psi K_{\scriptscriptstyle S}^0$	9073	95
$J/\psi K_{\scriptscriptstyle L}^0$	7813	56
$J/\psi K_0^*$	1735	56
$\psi(2S)K_{\scriptscriptstyle S}^0$	1157	87
$\chi_{c1}K_{\scriptscriptstyle S}^0$	517	88
$\eta_c K_{\scriptscriptstyle S}^0$	512	79
Total	20807	76

$$S = 0.691 \pm 0.029 \pm 0.014$$

$$C = 0.027 \pm 0.020 \pm 0.016$$


Dominant systematic:


- S: Δt resolution model.
- C: Interference in tag-side DCSD.

$b \to c\overline{c}s \mod s$

PRL 98 031802 (2007), 535M $B\overline{B}$

 $S = 0.642 \pm 0.031 \pm 0.017$ $C = 0.018 \pm 0.021 \pm 0.014$

$$S = 0.720 \pm 0.090 \pm 0.030$$

 $C = 0.040 \pm 0.070 \pm 0.050$

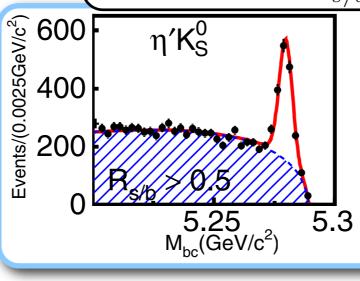
r is output of tagging algo.

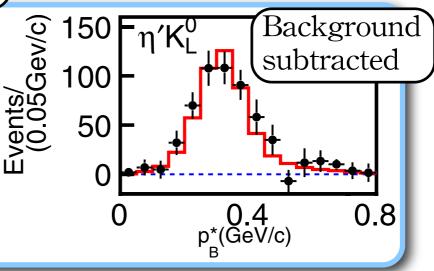
Mode	$N_{ m evts}$	P(%)
$J/\psi K_{\scriptscriptstyle S}^0$	7484	_
$J/\psi K_{\scriptscriptstyle L}^{ m 0}$	6512	_
$\psi(2S)K_S^0$	1284	92
\		

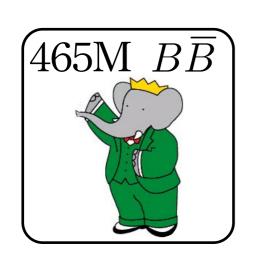
Dominant systematics:

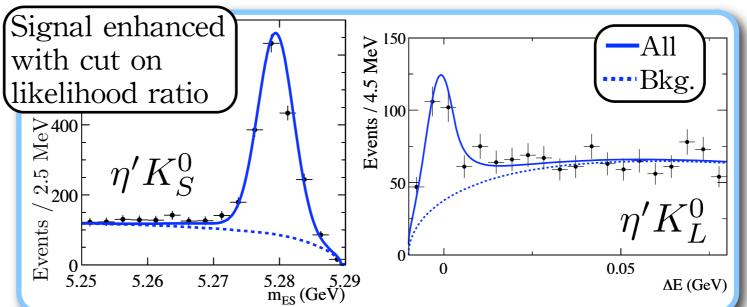
- S: vertex reconstruction.
- C: interference in tag-side DCSD.

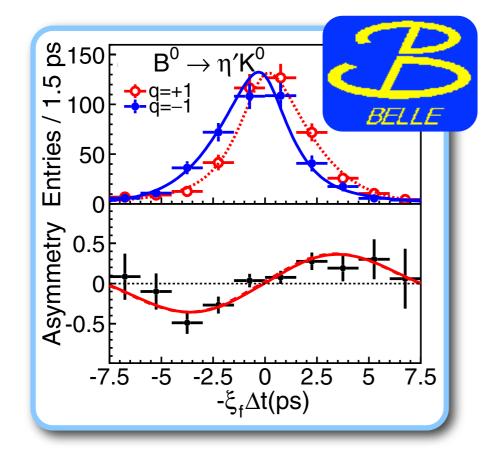
$B^0 \to \eta' K^0$


	Event yields				
Mode	Belle	BABAR			
$\eta' K_{\scriptscriptstyle S}^0$	1421 ± 46	1959 ± 58			
$\eta' K_{\scriptscriptstyle L}^{\stackrel{\circ}{0}}$	454 ± 39	556 ± 38			


- Large BF (65×10^{-6}) yields small errors on S_f and C_f .
- 7 decay channels:


$$\eta'(\ \rho\gamma,\ \eta_{\gamma\gamma}\pi^{+}\pi^{-},\ \eta_{3\pi}\pi^{+}\pi^{-})\ K_{S}(\pi^{+}\pi^{-})$$
 $\eta'(\ \rho\gamma,\ \eta_{\gamma\gamma}\pi^{+}\pi^{-})\ K_{S}(\pi^{0}\pi^{0})$
 $\eta'(\ \eta_{\gamma\gamma}\pi^{+}\pi^{-},\ \eta_{3\pi}\pi^{+}\pi^{-})\ K_{L}$


Signal enhanced with cut on ΔE and $\mathcal{R}_{s/b}$



$B^0 \to \eta' K^0$

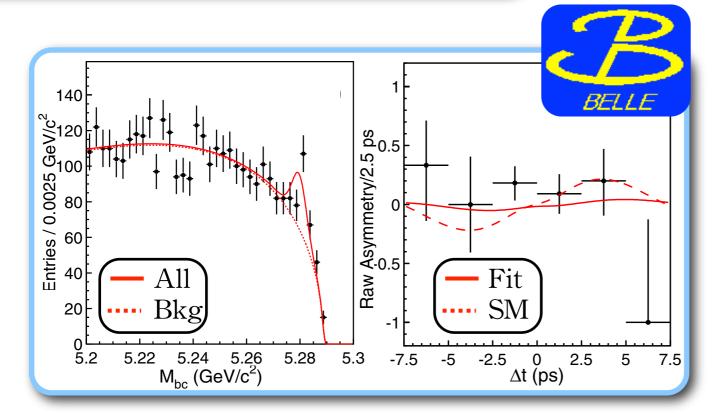

BABAR: PRD 79 052003 (2009)

Belle: PRL 98 031802 (2007)

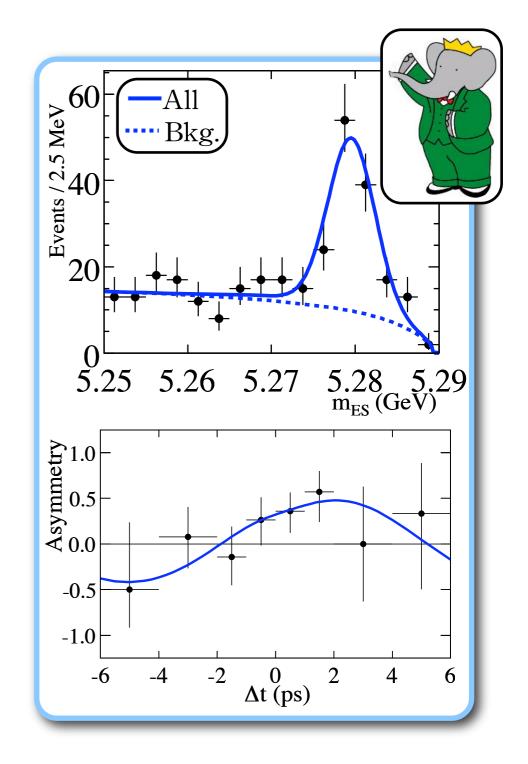
Dominant systematic for both:

- S: Δt resolution model.
- C: Interference in tag-side DCSD.

Mode	Belle	BABAR
$-\eta S_{\eta' K_S^0}$	0.67 ± 0.11	$0.53 \pm 0.08 \pm 0.02$
$C_{\eta' K_S^0}$	0.03 ± 0.07	$-0.11 \pm 0.06 \pm 0.02$
$-\eta S_{\eta' K_L^0}$	0.46 ± 0.24	$0.82 \pm 0.19 \pm 0.02$
$C_{\eta' K_L^0}$	-0.09 ± 0.16	$0.09 \pm 0.14 \pm 0.02$
$S_{\eta'K^0}$	$0.64 \pm 0.10 \pm 0.04$	$0.57 \pm 0.08 \pm 0.02$
$C_{\eta'K^0}$	$0.01 \pm 0.07 \pm 0.05$	$-0.08 \pm 0.06 \pm 0.02$


$B^0 \to \omega K_S^0$

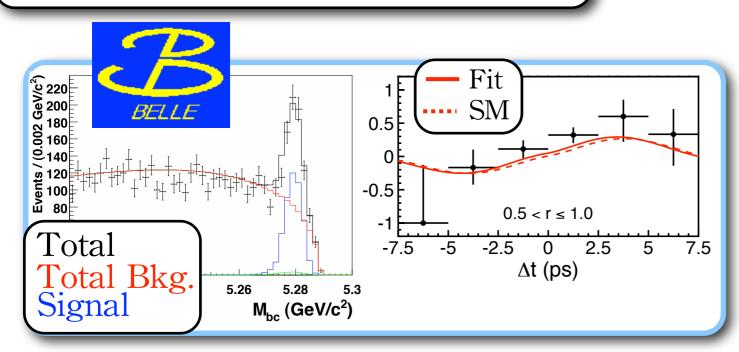
 $BABAR: PRD 79 052003 (2009), 465M <math>B\overline{B}$

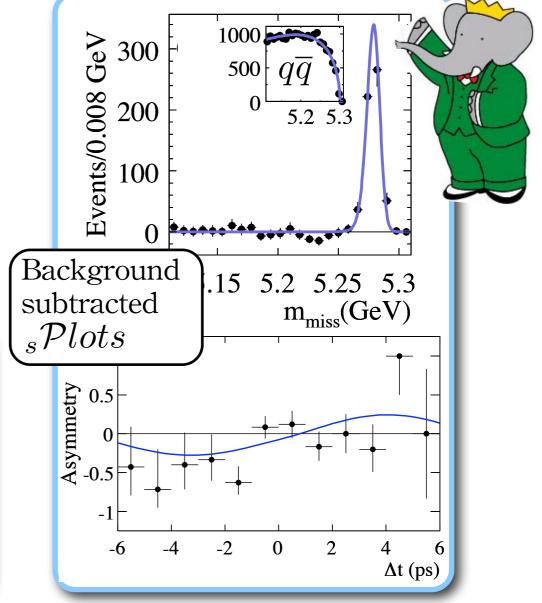

Belle: PRD 76 091103 (2007), 535M $B\overline{B}$

- Branching fraction $\sim 6 \times 10^{-6}$.
- Belle uses ω mass.
- Babar uses ω mass and helicity.
- Reconstruct:

$$\omega \to \pi^+ \pi^- \pi^0, K_S^0 \to \pi^+ \pi^-$$

	Belle	BABAR
$N_{ m evts}$	118 ± 18	163 ± 18
$S_{\omega K_S^0}$	$0.11 \pm 0.46 \pm 0.07$	$0.55^{+0.26}_{-0.29} \pm 0.02$
$igl(C_{\omega K^0_S} igr)$	$0.09 \pm 0.29 \pm 0.06$	$-0.52^{+0.22}_{-0.20} \pm 0.03$


13


$B^0 \to \pi^0 K_S^0$

BABAR: PRD 79 052003 (2009), 465 M $B\overline{B}$

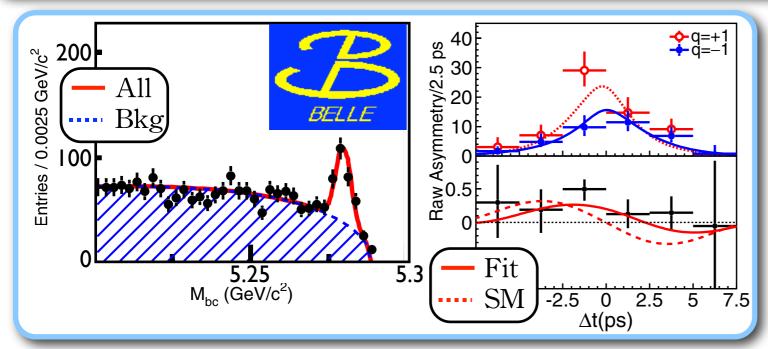
Belle: 0809.4366 (2008), 657 M BB

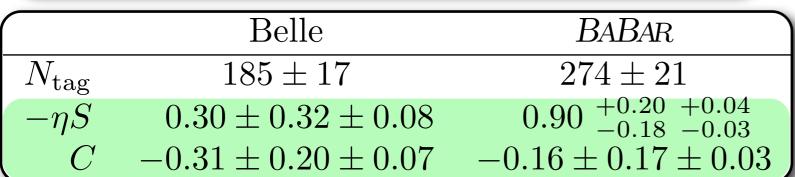
- No tracks from B decay vertex!
- 60% of signal B candidates make hits in inner silicon tracker.
- Obtain Δt in these events with constraints on average interaction point (and B lifetime for Babar).

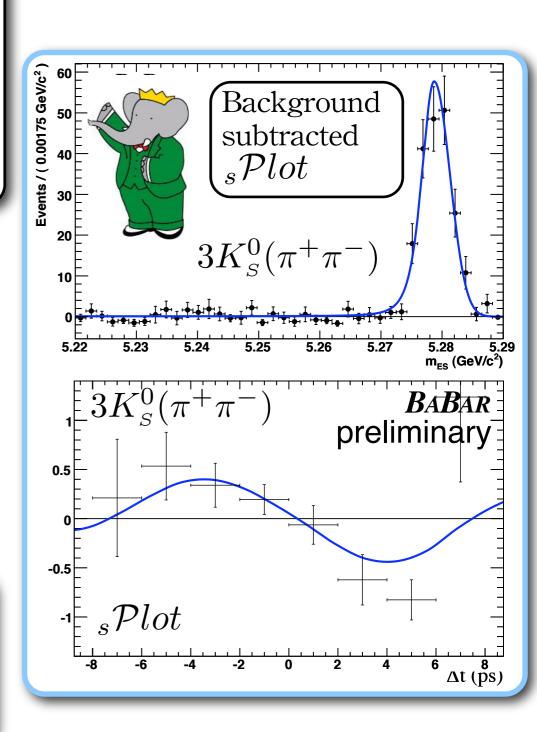
	Belle	BABAR
$N_{\pi^0 K^0_S}$	657 ± 37	556 ± 32
$egin{array}{c} N_{\pi^0 K_L^0} \ S \ C \end{array}$	285 ± 52	_
S	$0.67 \pm 0.31 \pm 0.08$	$0.55 \pm 0.20 \pm 0.03$
C	$0.14 \pm 0.13 \pm 0.06$	$0.13 \pm 0.13 \pm 0.03$

- All events constrain C.
- Belle also uses $\pi^0 K_L^0$ events to constrain C.

$B^0 \to K_S^0 K_S^0 K_S^0$

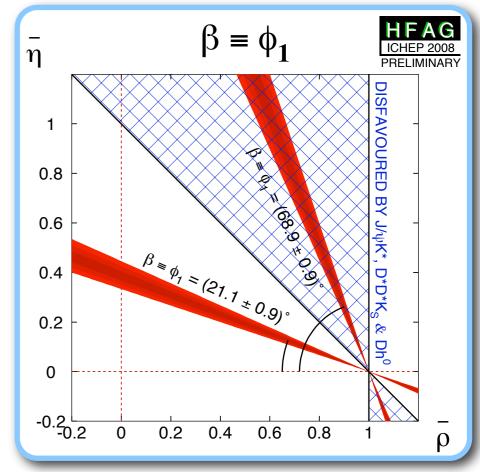

 $BABAR: CKM\ 2008\ preliminary,\ 465M\ B\overline{B}$


Belle: PRL 98 031802 (2007), 535M BB


• Reconstruct:

$$2K_S^0(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$$
 and $3K_S^0(\pi^+\pi^-)$

- Again, no tracks from B decay vertex.
- Require one K_S^0 to make hits in inner tracker.
- Constrain average interaction point and B lifetime.



$\frac{\pi}{2} - \beta$ Ambiguity

- Interference between CP-even and -odd amplitudes makes $J/\psi K^{*0}$, $D^{(*)}D^{(*)}K_s^0$ sensitive to $\cos 2\beta$.
- Interference in $D^{(*)}$ Dalitz plot makes $D^{(*)}h^0$ sensitive to $\cos 2\beta$.
- Interference in DP makes $K^+K^-K_S^0$ sensitive to β .

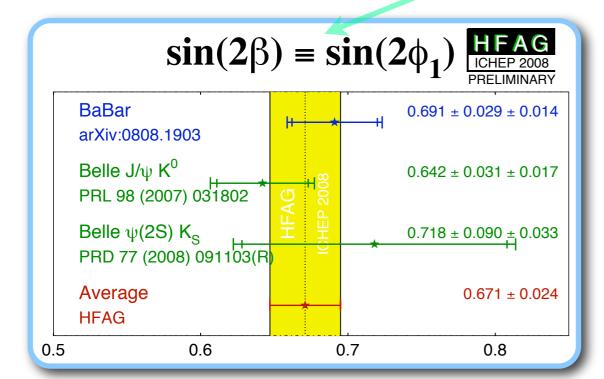
Final State	$\cos 2\beta$	C.L. for $\cos 2\beta > 0$	$\cos 2\beta$	C.L. for $\cos 2\beta > 0$
$ \begin{array}{c c} D^{(*)+}D^{(*)-}K_S^0 \\ D^{(*)0}h^0 \\ J/\psi K^{*0} \end{array} $	$0.38 \pm 0.24 \pm 0.05^{[1]}$ $0.42 \pm 0.49 \pm 0.16^{[3]}$ $3.32^{+0.76}_{-0.96} \pm 0.27^{[5]}$	94% 86% 89%	$-0.23^{+0.43}_{-0.41} \pm 0.13^{[2]}$ $1.87^{+0.40}_{-0.53}^{+0.22}_{-0.32}^{[4]}$ $0.56 \pm 0.79 \pm 0.11^{[6]}$	98.3%
$K^+K^-K^0_S$	$\beta = (29.5 \pm 4.5 \pm 1.5)^{\circ} [7]$	4.8σ	$\beta_{\phi K_S^0} = (21.2^{+\ 9.8}_{-10.4} \pm 2.0)^{\circ} [8]$	_

[1] PRD 74 091101 (2006) (230M BB) ^[2] PRD 76 072004 (2007) (449M BB)

[3] PRL 99 231802 (2007) (383M BB)

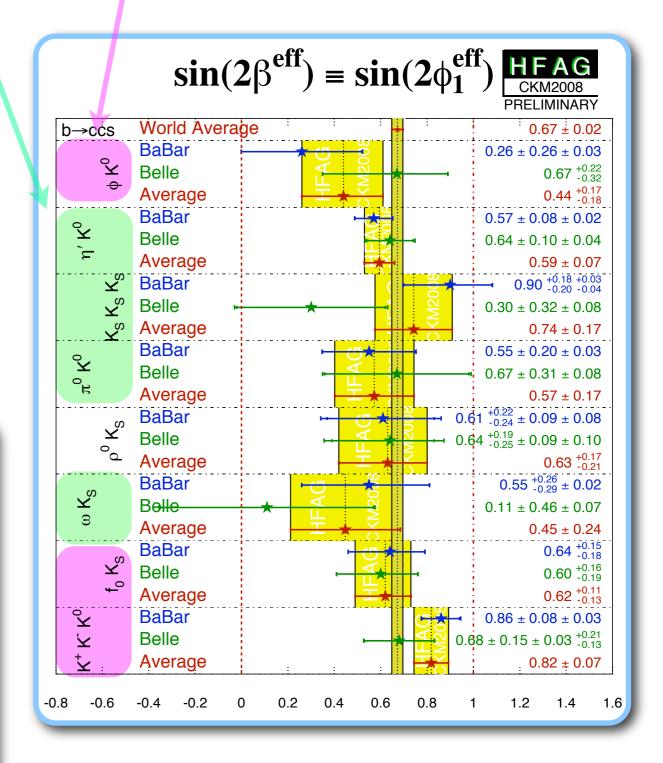
[4] PRL 97 081801 (2006) (386M BB)

^[5] PRD 71 032005 (2005) (88M BB)


[6] PRL 95 091601 (2005) (275M BB)

^[7] arXiv:0808.0700 (2008) (465M BB)

[8] ICHEP08 preliminary (657M BB)


Summary

This talk

- New physics is not dominant.
- At LHC: Difficult to trigger on ϕK^0 ; impossible to trigger on $\eta' K^0$.
- At Super Flavor Factories:
 - Measurements of β_{eff} and β systematics limited.
 - Experimental/theoretical uncertainties comparable.

"CPV at B factories, $B \to K\pi$, $b \to s\gamma$ " Yu Nakahama (Heavy Flav. & CKM-3)

Babar systematics on $\sin 2\beta$ from $J/\psi K^0$

Source/sample		Full	$J\!/\!\psiK^0$	$J\!/\!\psiK^0_{\scriptscriptstyle S}$	$J\!/\!\psiK_{\scriptscriptstyle L}^0$
Beamspot	S_f	0.0013	0.0021	0.0027	0.0000
	C_f	0.0006	0.0010	0.0021	0.0001
Mistag differences	S_f	0.0077	0.0057	0.0059	0.0083
	C_f	0.0047	0.0069	0.0053	0.0052
Δt resolution	S_f	0.0067	0.0068	0.0069	0.0071
	C_f	0.0027	0.0029	0.0034	0.0070
$J/\psi K_L^0$ background	S_f	0.0057	0.0063	0.0000	0.0271
	C_f	0.0007	0.0008	0.0000	0.0036
Background fraction	S_f	0.0046	0.0034	0.0036	0.0044
and CP content	C_f	0.0029	0.0021	0.0009	0.0107
$\overline{m_{ES}}$ parameterization	S_f	0.0022	0.0020	0.0026	0.0006
	C_f	0.0004	0.0005	0.0008	0.0002
$\Delta m_d, au_B, \Delta \Gamma_d/\Gamma_d$	S_f	0.0030	0.0033	0.0036	0.0040
	C_f	0.0013	0.0012	0.0011	0.0013
Tag-side interference	S_f	0.0014	0.0014	0.0014	0.0014
	C_f	0.0143	0.0143	0.0143	0.0143
Fit bias	S_f	0.0023	0.0044	0.0041	0.0063
(MC statistics)	C_f	0.0026	0.0044	0.0041	0.0060
Total	S_f	0.0135	0.0131	0.0119	0.0311
	C_f	0.0164	0.0187	0.0167	0.0270